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System of linear equations

Definition

a11 · x1 + a12 · x2 + . . . a1n · xn = b1,

a21 · x1 + a22 · x2 + . . . a2n · xn = b2,

. . .

am1 · x1 + am2 · x2 + . . . amn · xn = bm.

is a system of m linear equations with n uknowns: x1, . . . xn.

Definition

A solution of the above system is a set of values for the unknowns

x1 = k1, . . . , xn = kn which satisfy the above m equalities.
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Example of SoLE

3x + y + z = 1,

x + y = 0.

This is a system of 2 equations with 3 unknowns. It is easy to check that
x = 0, y = 0, z = 1 or x = −1, y = 1, z = 3 is a solution (there are other!).

x + y = 1,

x + y = 0.

This is a system of 2 equations with 2 unknowns. It has no solutions since if

there were any then it would mean that 0 = 1.
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Matrix representation

Observation

A system of m linear equations with x1, . . . , xn as unknowns:

a11 · x1 + a12 · x2 + . . . + a1n · xn = b1,

a21 · x1 + a22 · x2 + . . . + a2n · xn = b2,

. . .

am1 · x1 + ak2 · x2 + . . . + amn · xn = bm.

can be represented by a matrix equation:

A · X = B

where

A =


a11 a12 . . . a1n
a21 a22 . . . a2n

. . . . . .
am1 am2 . . . amn

X =


x1
x2
. . .
xn

B =


b1
b2
. . .
bm


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Equivalence

Definition

Two systems A1X = B1 and A2X = B2 of m linear equations with
n unknowns are said to be equivalent if they have the same
solution set.

Example:

x − y = 1,

x + y = 0.

is equivalent to

2x − 2y = 2,

x + y = 0.
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Augmented matrix

Definition

The matrix

(A|B) =


a11 a12 . . . a1n b1
a21 a22 . . . a2n b2

. . . . . . . . . . . .
am1 am2 . . . amn bm


is called an augmented matrix of the system A · X = B.

Example: the matrix (
2 −2 2
1 1 0

)
is the augmented matrix of the system

2x − 2y = 2,

x + y = 0.

Tomasz Brengos Transition Maths and Algebra with Geometry 7/27



Systems of linear equations
Homogeneous systems

Nonhomogeneous and associated homogeneous systems

Equivalence of systems: properties

Given two systems A1X = B1 and A2X = B2 when are they equivalent? How

can we show that they have the same solution set?

Theorem

Two systems A1X = B1 and A2X = B2 of m linear equations with n unknowns

are equivalent iff their augmented matrices (A1|B1) and (A2|B2) are row

equivalent.

Recall that two matrices are row equivalent if one can be obtained from the
other by elementary row operations:

1 (Row switching) i-th row and j-th row are interchanged (Ri ↔ Rj),

2 (Row scaling) each element in i-th row is multiplied by a nonzero scalar
k ∈ K (kRi → Ri ),

3 (Row addition) i-th row is replaced by a sum of i-th row and a multiple
of j-th row (Ri + k · Rj → Ri ).
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SoLEs in echelon form

Definition

A system AX = B of linear equations is said to be in echelon form
if the augmented matrix (A|B) is in row echelon form.

Recall that a matrix is in row echelon form if

1 all zero rows are at the bottom,

2 the first nonzero number in the i-th row is to the right from the first
nonzero coefficient in the row above it.
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Solving SoLEs

Recall that each matrix is row equivalent to a matrix in row
echelon form. Therefore, for any system AX = B there exists an
equivalent system A′X = B ′ in echelon form. In other words, there
is a system A′X = B ′ in echelon form with the same solution set.

Solving SoLEs

Given a system AX = B write its augmented matrix (A|B),

Find a matrix (A′|B ′) in row echelon form which is row equivalent to
(A|B),

Write the new system A′X = B ′ and deduce its solutions.
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Solving SoLEs: Examples

Consider the following SoLE:

2x + 4y − z = 11,

−4x − 3y + 3z = 20,

2x + 4y + 2z = 2.

Its augmented matrix is given by: 2 4 −1 11
−4 −3 3 20
2 4 2 2


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Solving SoLEs: Examples

Using elementary row operations we obtain the following matrix in
row echelon form equivalent to the matrix from the previous slide: 2 4 −1 11

0 5 1 2
0 0 3 −9



Tomasz Brengos Transition Maths and Algebra with Geometry 12/27



Systems of linear equations
Homogeneous systems

Nonhomogeneous and associated homogeneous systems

Solving SoLEs: Examples

 2 4 −1 11
0 5 1 2
0 0 3 −9


This is the augmented matrix of the system:

2x + 4y − z = 11,

5y + z = 2,

3z = −9.

We see that the 3rd equation implies that z = −3. This and the 2nd equations

gives us 5y − 3 = 2 and hence y = 1. Similarily we show that x = 2. The

system has a unique solution x = 2, y = 1, z = −3.
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Solving SoLEs: Examples
Consider the following SoLE:

x + 4y − 3z + 2t = 5,

2x + 8y − 5z = 12.

It augmented matrix is: (
1 4 −3 2 5
2 8 −5 0 12

)
By row reduction we get: (

1 4 −3 2 5
0 0 1 −4 2

)

x + 4y − 3z + 2t = 5,

z − 4t = 2.
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Solving SoLEs: Examples

x + 4y − 3z + 2t = 5,

z − 4t = 2.

This system in echelon form doesn’t have a triangular form as in the previous
example. We see that there are 2 equations and 4 unknowns. The system has
more than one solution. We take non-leading variables, namely y and t, and
assign arbitrary values to these. Say y = a and t = b. Then we use a simple
substitution to get: z − 4b = 2 hence z = 2 + 4b and x = 11− 4a + 10b. The
solution depends on two parameters, a and b and is given by:

x = 11− 4a + 10b, y = a, z = 2 + 4b, t = b.
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Solving SoLEs: Examples

Consider the following SoLE:

2x + 4y = 0,

2x + 4y = 1.

Its augmented matrix is given by:(
2 4 0
2 4 1

)
Using elementary row operations we obtain the following matrix in row echelon
form equivalent to the matrix above:(

2 4 0
0 0 1

)
This system has no solutions!
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Kronecker-Capelli Theorem

Theorem

A system AX = B of linear equations has a solution iff
r(A) = r(A|B).

Example: (
2 4 0
0 0 1

)
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Homogeneous SoLEs

Definition

A system of linear equations is called homogeneous if it is of the
form

A · X = 0

The homogeneous system of linear equations ALWAYS has a
solution, namely x1 = 0, x2 = 0, . . . , xn = 0. Any other solution (if
there is one) is called a non-trivial solution.
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Homogeneous SoLEs:Examples

Consider the following system:

x + 2y − 3z + w = 0

x − 3y + z − 2w = 0

2x + y − 3z + 5w = 0

We see that there are 3 equations and 4 unknowns. Therefore,
there are non-trivial solutions!
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Homogeneous SoLEs:Examples

Consider the following HSoLE:

x + y − z = 0

2x − 3y + z = 0

x − 4y + 2z = 0.

It can be reduced to

x + y − z = 0

−5y + 3z = 0.

This system also has a non-trivial solution since if we take the non-leading

variable z and assign to it any value, say z = a, then y = 3
5a and x = 2

5a.
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Homogeneous SoLEs:Examples

Consider the following HSoLE:

x + y − z = 0

2x + 4y − z = 0

3x + 2y + 2z = 0.

It can be reduced to

x + y − z = 0,

2y + z = 0,

11z = 0.

This system also has only the zero solution.
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Solution space

Theorem

Let AX = 0 be a system of m linear homogeneous equations with
n unknowns. Then the set W = {v ∈ Kn | Av = 0} of solutions is
a subspace of the vector space Kn. Moreover,

dim(W ) = n − r(A).

Proof (of the 1st part of the statement):
Take v1, v2 ∈W . This means that Av1 = 0 and Av2 = 0. Hence,

A(v1 + v2) = Av1 + Av2 = 0 + 0 = 0.

Therefore, v1 + v2 ∈W . Similarily, we prove that for any k ∈ K, k · v1 ∈W .
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Solution space and basis: Example

Consider the following HSoLE:

x + 2y + 3z = 0,

−2x − 4y − 6z = 0.

It reduces to:

x + 2y + 3z = 0.

The non-leading variables are y and z . Put y = a and z = b. The solutions are
of the form:  x

y
z

 =

 −2a− 3b
a
b


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Solution space and basis: Example

The solution space is given by:

W = {

 −2a− 3b
a
b

 | a, b ∈ R}.

We see that any vector from W depends on two parameters,
namely a and b. If we put a = 1, b = 0 and a = 0, b = 1 we will
obtain two vectors  −2

1
0

 ,

 −3
0
1


which form a basis of W .
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Homogeneous and nonhomogeneous systems

Theorem

Let AX = B be an arbirary system of linear equations. Let U be the solution
set and let v0 ∈ U be a particular solution to this system of linear equations.
Then

U = v0 + W = {v0 + w | w ∈W },

where W is the solution space of the homogeneous system AX = 0.

Proof: any element from v0 + W is a solution to AX = B. Indeed,

A(v0 + w) = Av0 + Aw = B + 0 = B.

Moreover, if Av = B then put w = v − v0. We see that v = v0 + w and

Aw = A(v − v0) = Av − Av0 = B − B = 0.

Tomasz Brengos Transition Maths and Algebra with Geometry 27/27


	Systems of linear equations
	Homogeneous systems
	Nonhomogeneous and associated homogeneous systems



